Log Loading Equipment and an Interesting Idea about Traffic

Other than iron ore from Wawa, and finished products from Algoma Steel created from said iron ore, one of the primary cargoes carried on the Algoma Central Railway was pulpwood.

Over the years a number of private spurs operated by different logging and forestry companies are listed in employee timetables, as well as other major operations loading from a clearing alongside the railway’s house track at various sidings.

So, with pulpwood loading being such a significant source of traffic on the ACR (or in several locations on pretty much all other Northern Ontario and Quebec lines) anyone modeling the ACR or really any model railways loosely based on Northern Ontario will want to include some pulpwood traffic at least, and probably actually at least one loading spur somewhere to represent this.

So I thought I’d share a series of my photos of different pulpwood loading locations and take a look what such an operation looks like. We find that the common word here is “simplicity”. Loading pulpwood does not require large overhead cranes or loading equipment (although at some larger saw mills like the Tembec mill at Hearst massive cranes make short work of moving tree-length logs between railcars or trucks and a large storage pile and the mill), enclosed loading bays, conveyors, dump pits, etc. All that is needed in most cases is simply a flat cleared area next to the tracks where trucks can drive up and unload their logs either directly into waiting railcars or into a storage pile. There are no fixed structures required to model, but the log trucks and other self-propelled equipment are of definite interest.

scan0009

This first photo is from my slide collection (photographer’s name unknown) and is taken at the Hawk Junction in early 1981 showing a pair of trucks loading gondola cars with logs on the team track behind the old railway freight shed (the grey building at background left).

Note that the truck in the middle (and likely the one at left as well) has its own hydraulic loading crane permanently mounted directly to the rear of the truck itself. Not all trucks will have this, but the self loader is a fairly common feature that allows the truck itself to also include the required loading equipment.

Unfortunately I haven’t taken the chance to actually personally photograph any individual trucks directly, but a google image search for “pulpwood truck” will turn up some good results.

IMG_0175

This photo is from the Huron Central ex-CP yard in Sault Ste. Marie. These two south tracks of the yard are always jammed with pulpwood flatcars which are loaded here for shipment to the paper mill at Espanola, ON on the Huron Central between Sault Ste. Marie and Sudbury. The facility is no more involved than a wide driveway along the track running the length of the yard. For the detail-oriented, I noted in most of my closer shots of individual railcars on these tracks quite a bit of bark and other debris alongside the rails where trucks load the cars.

IMG_7499

This photo was taken at Eton from my trip on the Tour of the Line in fall 2013. Here again we see another log truck equipped with a self loader on the rear loading logs into flatcars on the spur track. While this photo really only shows about a quarter to a third of the operation here (there is a second spur to the left and this shows only a portion of the cleared area) the unseen parts are simply more of the same and this shot really shows all that is required for a log loading operation.

DSC_0101

This last photo was again taken at Eton, this time in 2005, and was sent to me by Steve Watson to illustrate the loading equipment. The machine this time is a SERCO Model 290 log loader; a larger specialized stand alone piece of equipment.

This photo also shows something else that is interesting. Notice the tank car (with diesel fuel placards) spotted at the very end of the spur track. While some pulpwood is delivered via the main highway system and loaded at spur tracks in or near town, some of these logging spurs can be pretty isolated from any regular road system (I was able to actually trace a logging road from Eton through Frater on satellite imagery, but it’s a pretty long and circuitous route over what’s likely some pretty poor excuses for roads, and even then you’re still 100 miles north of Sault Ste. Marie on Highway 17 by the time you get to the main road), making bringing in a tanker truck to refuel your logging trucks and other equipment a difficult proposition.

So an interesting idea to add to your operation, if the logging camp is particularly remote, is to occasionally spot a tank car of diesel fuel at the very end of a spur to refuel all your trucks. This sounds like something I can do at my pulpwood camp at Mosher which was also pretty isolated. I’ve heard this location also had portable unloading ramp on the north spur where trucks and other equipment could be brought in to the camp and older equipment was just sometimes abandoned there since there was little to no access to the outside road system from the logging road network around Mosher at the time.

Waybill Sorting Box

Just a small project this weekend to make a proper storage and sorting box for my waybills. All cut out of a single sheet of 20×30” foam core board.

The box is made from 3/16″ foam core board and has overall dimensions of (roughly) 10×10″ (precisely, it’s 9 15/16″ wide by 10 5/16″ deep to account for the internal size of the pockets plus the width of all the material) with 24 (4×6) sorting/storage slots that are 2 1/4″ wide x 1 1/2″ deep to fit the waybill cards. The depth of the outer walls is 4″, the depth of the inner pocket dividers are 3″. I cut a drop in the front of the box down to match the 3″ depth of the pockets to made it easier to see and access the front row(s) of waybills. The central dividers are notched halfway up where they cross each other to form a simple but sturdy interlocking series of halved joints (like this: https://en.wikipedia.org/wiki/Halved_joint ) I didn’t glue the dividers to each other due to the nice tight fit of the halved joints, but glued the whole divider assembly, the outer walls and base together with regular white glue.

The labelled card dividers within each pocket are just pieces of card stock (actually just the trimmings of the car card sheet after the car cards are cut out) cut slightly longer than the waybills so they stick up above them.

Excel Car Cards Revisted: Adding Logo Images to the Cards

Recently I attended an operating session at my club, where we use car cards created and printed from the “ShipIt!” software package. One of the features of the ShipIt! software is the ability to include a railway logo in the top corner of the car card – which I’ve been dully aware of forever since most of our car cards have a CP Rail logo in the upper corner (since our club models CP). However, the guy that prepares and prints out the car cards has actually started using this feature and adding specific logos to cars for different railroads, and the effect is actually pretty sharp when handling the waybills during operations. Thus I got inspired to see if I could add logos to my car cards which I created in Excel. (See my previous post: Excel Car Cards and Waybills)

With a bit of googling, I found this article on ExcelGuru.ca which was exactly what I was looking for. I suggest giving it a read, as this is exactly the information I followed in order to add the logos to my car cards; although I did tweak a couple things in the middle to combine it with my data lookup functions I described in my earlier post on the subject, the original author of that article (Ken Puls) deserves a lot of credit here.

Step 1: Setting up the Image Data

The first section follows the information from the ExcelGuru article pretty much verbatim. We need a new sheet added to the workbook to contain all of the images. Each row in the image table contains two columns, one with the image name, and the second column containing the image pasted into the cell.

There are basically two ways to go about this: define an image for every railway reporting mark you use in your car cards, or just define each image by itself and add in a separate column to the data sheet to specify the image name for each car card. While the second approach causes you to duplicate some value entries in the data table that drives the car cards, it’s the route I ended up going with so that I could optionally use multiple different images against the same reporting marks in order to display lessee logos on privately owned/leased tank cars and not have to define cells for obscure one-off shortlines and companies that I can’t find logos for.

Note that whatever route you go, every possible value that the data could use *must* be defined in the image table, or you’ll end up with the image cell on the final car card displaying a broken reference. If you define an image for each reporting mark, then each mark must be in the image data sheet, even if there’s no actual for that particular mark. There will just be a blank cell defined for that image. For defining images with names, there should be one “Blank” reference.

Each image doesn’t have to be exactly the same size, but they should all fit into the cell on the car card with at least a pixel or two of white space around the edge or it may actually cut off the card border when printed.

Once the table of images to use has been created, we turn each cell containing an image into a named reference that we can use later.

Highlight the table of cells you created, and then under the “Formulas” tab on the toolbar ribbon, in the “Defined Names” group click on “Create from Selection”. Choose to create names from values in the left column. This will use the names in column A to define a specific name for the corresponding cell in column B that can be used later.

That does it for setting up the image table, now let’s make some use of it.

Step 2: Setting up the Data Cells to drive the Image

The middle bit is where my usage may seem slightly more complicated, as in the example in the article, they link the photo to static text whereas I have yet another layer under this, using VLOOKUP functions (which I got into in detail in my previous post) to retrieve text data from another sheet. However, this really doesn’t affect the instructions much, as really the only difference instead of static text in the “driver” cell, the text is returned by that function.

However I do deviate from the article here a little, so I’ll highlight my steps here. First of course, the new data column is added to the Data sheet to specify the name of the logo image to display on the car card. I skipped creating any data validation on these cells.

Then, I added a new cell on the car card template page, just below (and outside the printed border of) the finished car card to output the image name using the standard VLOOKUP functions. I also want the cards to print properly if no logo image is specified in the data, so it’s wrapped with an IF function that returns “Blank” if no value is returned, so the picture cell displays a proper blank cell instead of “#REF” indicating a bad lookup. The final cell formula for the first car card on the sheet then looks like this, where cell E16 contains the starting car card ID:

=IF(VLOOKUP(E16,Data!A:P,16,FALSE)="", "Blank", VLOOKUP(E16,Data!A:P,16,FALSE))

Now, select that cell, and use the “Define Name” tool in the “Formulas” tab of the toolbar ribbon to manually set a defined name (e.g. “Car1Picture”) for that cell that will again be referenced later.

Next, click on the Name Manager tool in the same section of the toolbar ribbon. We want to edit the name we created and modify its reference a little. Select the new entry (e.g. “Car1Picture”) and change the “Refers To” from:

='Car Cards'!$A$13

to:

=INDIRECT('Car Cards'!$A$13)

What this does is allow this name to refer not specifically to this cell, but to use the value of this cell to refer to another cell, which will allow us to look up the correct cell in the Images table based on the changing sheet data.

Step 3: Linking and Displaying the Image

The final steps are again pretty much followed exactly as presented in the posting on ExcelGuru.

On the Images sheet, select the *cell* (not the actual image object) for the first image and press Ctrl-C to copy it.

Then on the car card template sheet, select the cell where the logo will go and paste in a picture link. It’s important to pick the correct paste option here. The ExcelGuru article shows how to do it in Excel 2010 (right click in the cell, and from the pop-up menu choose Paste Special > Picture Link (icon at bottom right like a little landscape picture with a chain link in front of it)). In the older Excel 2007, which I have, select the cell, and then under the “Home” tab of the toolbar click on Paste > As Picture > Paste Picture Link. This creates a picture object that displays a view of the linked cell.

Of course the point is for it to change based on the sheet data, and not just display the same picture, so we want to change the reference. Click on the created picture to select it, and in the formula bar change the reference to the named cell (from Step 2) that contains the image name for this car card:

And presto! The car card now has an image that will change based on the data for the car card. The final result looks something like this:

Files

If you’d like to print your own car cards, here’s an almost-blank copy of my Excel template, with just a few sample cars as data examples.

Excel Car Cards and Waybills

Here I will discuss how I created my own car cards and waybills using Microsoft Excel’s spreadsheet software.

Note: this will not be intended to be a detailed tutorial on Excel, or the specific features I’m using; I will show enough to convey how I’m using the feature(s), but for additional details I will refer you to Excel’s documentation or other help sites. It should also be possible to achieve these results using similar tools in other spreadsheet software, but I leave that research to the reader as to how the tools in those softwares may differ from Excel.

Car Cards

The specific design of the car cards and waybills is inspired by the ones we use at the club created and printed using the Ship-It model railroad software. They follow the same dimensions and general form factor, although I have tweaked the design a little to customize it for my own purposes (especially of the shipment waybill insert slips – see below).

On the car card, the car information goes at the top, with the most important information (identifying reporting mark and number) in the central place of prominence. Other descriptive information such as type, colour and length are included below to assist in visually identifying the car. The Notes field may indicate other special features of the car, or usage restrictions (for example, “Paper service only” on boxcars meant for such).

The bottom of the card is designed to fold up and be taped to form a pocket into which the shipment/routing portion of the paper work (waybill) is inserted.

Below we see the Excel sheet I use for printing out my car cards. It took some tweaking to get the column sizes exactly correct, but otherwise looks pretty straightforward. However, under the hood all of the fields are defined with formulas that pull data from another sheet in the workbook. I didn’t want to copy and past page after page after page of hand-coded car cards (and especially the waybills with their vastly higher number of fields and flopped orientation) so I made one template page, and used Excel lookup functions to pull the data from another sheet, so the car data could be tracked and manipulated far easier in a standard grid format, and any arbitrary range selected for actual printing. In this way, car cards for a large fleet of hundreds of cars can easily be created.

car car sheet

You’ll see in the first image above of the car card template sheet, a “Starting ID” cell below the cards (in cell E16, highlighted). I’m going to use the value in this cell to feed into the Excel lookup functions, which will extract data from the actual roster sheet, and populate it into the fields in the car card template for printing.

Below is the actual roster information, contained in another sheet within the same workbook. Way easier to read and keep track of, and much more additional notes and information can be added in further columns to the right; our lookup only needs to deal with the first ten columns. Note in particular the first column with the heading “ID”. This is the value we’re going to lookup, and then populate the date from the other columns in the same row into the template sheet for printing.

car card data

Excel has several data lookup functions, and the one we want is the “VLOOKUP” function. The VLOOKUP function scans through a specified range of data, looking for a specific value in a particular column. Once that value is found in the search column, it can return a value from another column in that row. The VLOOKUP function in Excel looks like this:

=VLOOKUP( [value], 
          [source sheet name]![data columns], 
          [column # in data to pull result from], 
          [allow approximate matches])

In my case above, we’re pulling the lookup value (the car ID) out of cell E16, so the reference to that cell is the value. (For the subsequent car cards, we want to pull the next several cars in the data sheet, so the lookup value will be the value of (E16)+1, (E16)+2, etc., so if the starting ID is 1, car cards 1 through 5 will be printed.)

The name of my second sheet with the car data is “Data”, and the data is in columns A through K in that sheet. (The VLOOKUP function will scan the first column trying to find the lookup value.)

The last argument should be set to FALSE as we only want an exact match.

Put that all together, and the lookup for the reporting mark field on the first car card looks like this:

lookup function

One thing to know about the VLOOKUP function in excel, is that if the returned cell in the data sheet is blank, the VLOOKUP function will display that as a 0 in the display cell. For some fields here, like the Notes and Empty return information, I definitely want the cell to be blank if there’s no data, not rendered as zeroes. To protect that, any cell that’s using a VLOOKUP that you want to allow to be blank will need to be wrapped with an Excel IF function, which looks like this:

=IF ([condition], [value if true], [value if false])

In this case, my condition will be if the value from the lookup function is blank (“”), make the cell blank, otherwise insert the returned value. If I do this for the example cell in the image above, it would end up looking like this:

=IF (VLOOKUP(E16,Data!A:K,2,FALSE)="", "", VLOOKUP(E16,Data!A:K,2,FALSE))

… which actually looks far more complicated than it is, since the whole lookup function is pasted in there twice.

IMG_5039

Waybills

I also used these tools to create my own custom waybill template. This was a lot more work than the car cards simply owing to the sheer number of fields involved in each waybill compared to the car card, and managing to fit 10 of them per sheet as opposed to 5 per sheet for the car cards. However, it was largely a matter of just taking the time and effort to copy and adjust the lookup functions much as above. While there are quite a number more fields to deal with, and more waybills fit onto a page than the car cards, the general method is exactly the same. Just time consuming to do that many fields. But once it’s done, you have a dynamic template that can easily and quickly create and print out hundreds of different waybills.

waybill template

My waybills are “two-cycle” with each one printed on one side of the paper and having two separate moves (generally an empty move and a loaded move), one of which is visible at a time and rotated (between sessions) in the car card pocket to display the second move when the first move is completed. This required printing the second move upside-down to the first – although Excel doesn’t allow you to set the text orientation in a cell to “upside down”. It does however let you do “up” and “down”, so I just designed the waybills sideways with each half oriented a different way, as seen in the image above.

Two-sided four-cycle waybills can also be created, just more of the same effort to set up the additional fields on the second page, and a bit of playing with the page margins and column positions to find the proper alignment so that when the second page is printed on the reverse of the first, the waybill edges line up properly for cutting them out. I only needed two-cycle bills, so I did not bother with this effort.

You’ll see that my waybill template includes a block code for switching/routing at the very top, as generally this is the most important information required when switching or handling cars – “Where does this go?” and using a routing or block code at the top of the waybill makes it easier to identify the car’s immediate destination. This is reinforced with a colour-coded bar below the block code which matches the block. (I plan on making a chart of the blocks and a system map readily available to operators in the model railroad’s timetable document.)

To make the colour coded bar, I created a series of Conditional Formatting rules to apply a fill colour to this cell based on the text value in the block code cell above/beside it.

Once the waybill template is completed, it’s a matter of playing around in the data grid to create the various shipment information, and then printing them out in the template by adjusting the starting ID/group to fill in the data and print the results. Cut out with scissors, insert into the appropriate car cards, and voilà:

IMG_5042

Files

A few people asked if I would share the actual Excel files. Here they are.

Notes: The car cards file is useable as-is by anyone. I cleared out my own roster information so the entire world doesn’t know my inventory, just leaving the first few cars behind to illustrate how the data works. For the waybills file, I actually uploaded my file as-is, including all my data. Consider it a gift to other ACR modelers, and shows how the data works. Note that if you’re adapting the file to your own railway and want to include the colour coded bars that match to the destination block codes, you’ll have to go in and edit all the conditional formatting rules for your own station/block names. Note that this workbook also contains the customer order sheet described in my previous post.

If clicking on the link doesn’t open the file properly, right click and choose “Save As…” from the menu that comes up. (Mac users with a one-button mouse, I believe you hold the “Command” key and click for this menu.)

Update: see also followup post where I add company logos to the cards.

Simulating Customer Demand on a Model Railroad

In this post, I’d like to discuss one method to really improve on the car card and waybill operating system for simulating freight traffic and moving cars around a model railroad. This post won’t discuss the particulars of how the system works as a whole, just a way to enhance it by controlling or introducing variability into how many new cars are brought into the layout, and which customers will get switched.

Someone recently asked a similar question on a Canadian Railway Modelers facebook group of “how to determine which industries on a switching layout get cars in a session”, so I thought I’d take the opportunity to expand on my version. A few different ideas that people have used, of which this is only one, were given in response to the facebook question such as rolling a die for each industry, drawing random playing cards, etc. The spreadsheet system does have an advantage of being easily scaleable to a larger layout as well as a smaller one, but it’s certainly not the only approach.

The system described here was initially developed by my friends at the Waterloo Region Model Railway Club to generate traffic on our large club layout. I’ve copied it to play with generating traffic for my own layout (which doesn’t exist yet, but I can plan and experiment with traffic for the future) and also tweaked a few minor aspects of the system to customize it for myself.

Use With CC&WB and Other Systems

My club and I have used this in conjuction with a car card & waybill system to select number of fresh waybills to assign, but really the spreadsheet just generates a number of cars and you can use this with any sort of system from CC&WB, to tab-on-car, to manually written switch lists, or almost any other form of non-computerized car forwarding system. The spreadsheet just takes the every day decision making out of how many waybills/tab markers/cars to select for a customer after the initial up-front setup of the sheet. And if you find things aren’t quite balanced you can always play with tweaking the numbers in the spreadsheet.

If you’re using with with car cards and waybills (CC&WB) note that one major thing that is assumed by this system is that you are constantly removing and replacing waybills in the car cards and one waybill/car card combination is NOT permanently associated with each other. I’ve seen a number of modelers and even software programs (like Ship-It!, which our club used to actually create and print our car cards/waybills, but required some serious work-arounds of the system in some places including separate databases for the car cards and waybills due to the 1:1 permanent waybill to car card assignment issue…) using systems that permanently assign a specific four-cycle waybill to a specific car. This I think also leads to one of the more common complaints of the CC&WB method being “too rigid” with the same car always travelling the same pattern. Which is only an issue if you have a rigid mindset of never changing the waybill assigned to the car. Or your cars are so unique

Also, since we’re varying the number of new waybills assigned to empty cars in staging (or interchange tracks, or yard storage), this method will end up requiring breaking down and re-making inbound trains in a “fiddle” staging yard (or else assigning generic “through” waybills to remaining unused cars that are left over in the trains in staging, if you don’t want to physically change around any cars in staging).

If you aren’t already familiar with the “car card and waybill” system, I could do a separate primer later, but there’s plenty of information out there if you search the phrase “model railroad car card and waybill”. The short version is that it was designed by a model railroad back in the 1970s to simulate the important details from a real shipping waybill, but making all the paperwork reusable by separating the car and shipment information into two pieces of paper that combine together, usually by inserting the “waybill” (shipment details) into a pouch built in to the car card.

How it Works

The basic method is to generate car orders between a given minimum and maximum number of cars on a percentage frequency, or odds of occurring. (i.e. “30% of the time”, “50% of the time”, “100% of the time”…) By using a spreadsheet with a random number generator, it’s simple to generate varying orders for a number of different customers or car types. By varying the minimum/maximum and frequency values, it’s possible to have different orders range from completely constant (i.e. min/max the same at 100% frequency) to completely variable, with each order having a different statistical odds of occurring or range of amounts of cars to order.

I also figured out a way to tweak the spreadsheet to allow some orders to be generated on specific days of the week (e.g. Mondays, Wednesdays, etc.) which can be helpful if you have certain trains that every other session, or to reduce traffic for a “Weekend” session with less trains if you have fewer operators available. I’ll discuss this tweak at the end.

Setting up the Order “Pools”

Since the point is to control customer demand, you’ll generally want to have an order line for each significant customer/car type. However pools can also be somewhat generic for through cars.

For example, on my future layout, I’ll have several different pulpwood orders for my major customers: Abitibi/St. Marys Paper (possibly split into separate orders for the spurs at Trembley, Limer, and Wyborn), Newaygo (possibly split into separate orders for Mosher and Trembley spurs), and Miscellaneous. For the Newaygo sawmill, in addition to the inbound logs, I’d also have an order for lumber flatcars, and one for woodchip gondolas. A few other lumber flatcar orders would exist for other mills in Sault Ste. Marie and Hearst. I’ll also have some generic pools for CN overhead traffic between Oba and Hearst.

At the Waterloo Region club, which is a very large layout with a lot of traffic we actually developed a numeric classification/pool code system to replace the AAR car types on our car cards and waybills. We then organized and set up the customer order pools organized by these car types. This could be an entire discussion unto itself how we developed the specific details of this system, and while it’s probably sounding a lot more complicated right now than it actually is, and one doesn’t necessarily need to go this far, for now let’s just say that doing it this way for a large layout makes it much easier to organize the waybills and car cards by sorting on the classification/pool number and to generate realistic looking traffic by separating out different car types, configurations and assignments (for example assigned-service paper boxcars). Specific service assignments can also be indicated by a note on the car card like “Paper Service Only” but when re-waybilling over a hundred cars for a session, reducing the decision making by making the car types distinct is helpful. On a smaller layout, NOT reducing the decision making “could” be more fun by actually making you feel like you’re acting more like the local station agent in assigning cars for loading –

How to Setup the Spreadsheet in Excel

The original spreadsheet was created in MicroSoft Excel, and the formulas used here are specific to that program, although they may be similar if not the same in other spreadsheet software. Confirming that or figuring out the equivalent syntax or formula for different software is left to the reader.

Note however, that in laying out specific formulas, for simplicity of description I just referenced the columns (for example “= A + B”) while when actually entering the formulas you actually need to reference the specific cells (“= A2 + B2”). You can do this for the first column and then drag and fill down the sheet in Excel.

Basic Customer Demand based on a Percentage Frequency

The first four columns of the sheet are manually filled in and define the parameters of the order:

A – Description
B – Minimum cars to order
C – Maximum cars to order
D – Frequency% (0-100) – how often to fill this order

Then, we use a few columns to generate our random numbers and calculate the results:

E – Generate a random number between 0-100 to compare against the frequency column:
= RANDBETWEEN(0, 100)

F – Compare the generated result against the frequency. Output a 1 if less than or equal (so the order will happen), or 0 if over (it won’t happen today/this session):
= IF (E <= D, 1, 0)

G – Randomly generate the number of cars to pull within the minimum to maximum range specified. Note that we also multiply the result by the 1 or 0 in column F to make sure orders that have a frequency of less than 100%. This is the final number of cars to assign to this order for the session.
= RANDBETWEEN(B, C) * F

[Optional Advanced Feature] Generating Orders Based on a Specific Day of the Week (DOW)

The original spreadsheet we used at the Waterloo club was exactly as above, using a simple percentage frequency to control whether an order is filled or not. (Setting a minimum value of 0 cars to order will also reduce how many times a car shows up, but the statistical probability is a bit harder to calculate if the frequency is also less than 100.) Most of you will probably stop at this point, but this was an interesting proof of concept so I’ll go ahead and discuss it (though it gets a bit more technical).

In some cases, you might have a railway that runs certain trains on alternating days, or a reduced schedule on weekends (which could be helpful to be able to run a “weekend” schedule for a session if you know you’re going to have a smaller operating crew, or a fuller session with extra traffic if you have an extended session with extra crews. Using a couple of additional slightly more advanced Excel formulas and features I was able to be able to also be able to specify Days of Week for each customer pool to be ordered. (I specifically set it up for Day of Week, but you can use the same technique for “Full”, “Normal” and “Reduced” sessions.)

Note – this will get a little bit more technical to evaluate the day of week.

In this version, the first six columns (A-F) are the same, but the final result will be calculated a little differently, so delete column G for now.

We’ll also need a few extra columns to represent the days of the week, so we’ll use up the next seven columns* (G through M) to represent the days Monday-Sunday. Put a “1” in the column for each day the shipment *should* occur. Leave blank for the days to be skipped.

*Stylistically, I actually put my DOW columns all the way to the right hand side of my own spreadsheet to make it more readable when using and editing the sheet, but we’re mainly talking concept here so I’m just going to keep everything in the order I discuss them right now. Just make sure if you put things in a different order to reference the column that contains the right data. Another suggestion to make the sheet better to look at is to change the text colour on the calculated comparison columns to white or light grey so those numbers aren’t visible if you print out the sheet. As mentioned before, you can also adapt this concept to make different orders for high/normal/low traffic sessions, using three columns here instead of seven. Adjust other column references accordingly.

Column “N” then evaluates against the selected Day of Week. This is where things get interesting. First of all, I stuck a cell at the very top of the spreadsheet where I can indicate the Day of Week for the session I’m generating orders for (1 for Monday, through 7 for Sunday). In my case, that’s specifically in cell B1. Excel has an “offset” function which allows you to fill the value of one cell with the value of another cell in a different column in the same row. The function looks like this: OFFSET(reference, rows, columns) where the reference is a starting cell reference, and the number of rows and columns to shift over from that starting position.

In our case what we want is to use that function to check whether there is a 1 in the column for today’s DOW, by using the value from cell B1. So we want to shift over than many columns on the same row. But we also want to make sure that when we fill the cell formulas down to following rows, that the cell we’re referencing here doesn’t shift down a row with the other cell references. So we want to use an absolute cell reference to make sure that this never changes. Excel does this by putting a $ in front of the part of the reference we don’t want to change. So to make sure that the offset *always* references cell B1, the cell reference should look like $B$1 instead of B1.

In this case, to be absolutely clear, and to show the difference between the relative and absolute cell references, I’ll show the formula as if it were for row 3 of the sheet. The final result in cell N3 should look like this:
= OFFSET(F3, 0, $B$1)

Then finally in Column “O”, we again generate our random number within the min/max range and multiply it by both the frequency result and the DOW result:
= RANDBETWEEN(B, C) * F * N

There you have it! Now the spreadsheet will control the minimum and maximum number of cars, frequency (% odds of occuring) and also specific days of the week to order cars for a customer. And remember, if you simply want a particular customer to *always* get cars, just set the frequency to 100 and make sure there’s a 1 in all of the Day of Week columns. This order sheet is now completely as rigid or flexible as you could possibly desire, on a customer-by-customer basis.

Full spreadsheet column definitions (based on starting position in row 3):

Column Description Formula
A Name/Description
B Minimum
C Maximum
D Frequency (%)
E Frequency Random* =RANDBETWEEN(0, 100)
F Frequency Check* =IF (E3 <= D3, 1, 0)
G DOW Monday
H DOW Tuesday
I DOW Wednesday
J DOW Thursday
K DOW Friday
L DOW Saturday
M DOW Sunday
N DOW Check* =OFFSET(F3, 0, $B$1)
O Final order amount =RANDBETWEEN(B3, C3) * F3 * N3

* – Calculated column that can have its visibility reduced for readability when using.